Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xin-Qiang Wang,* Wen-Tao Yu, Dong Xu and Yan-Ling Geng

State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China

Correspondence e-mail:
xqwang@icm.sdu.edu.cn

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.015 \AA$
R factor $=0.036$
$w R$ factor $=0.072$
Data-to-parameter ratio $=18.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Poly[[μ-aqua-tetra- μ-thiocyanato-manganese(II)mercury(II)] sulfolane solvate]

The title polymeric compound, $\left\{\left[\mathrm{MnHg}(\mathrm{SCN})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\right.$-$\left.\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~S}\right\}_{n}$, consists of slightly distorted $\mathrm{MnN}_{4} \mathrm{O}_{2}$ octahedra and HgS_{4} tetrahedra. Each $\mathrm{Mn}^{\mathrm{II}}$ ion is bound to N atoms belonging to the thiocyanate (SCN) groups and to two O atoms of adjacent water ligands. The sulfolane molecule connects with the coordinated water molecule through hydrogen bonding. Each $\mathrm{Hg}^{\mathrm{II}}$ atom is coordinated by four SCN S atoms. The two adjacent $\mathrm{Mn}^{\mathrm{II}}$ atoms and two O atoms of bridging water molecules connect with one another and form a parallelogram. Each pair of $\mathrm{Mn}^{\mathrm{II}}$ and $\mathrm{Hg}^{\mathrm{II}}$ atoms is connected by an -SCN - bridge, forming an infinite threedimensional structure.

Comment

Manganese mercury thiocyanate (MMTC) consists of distorted $\mathrm{MnN}(\mathrm{SCN})_{4}$ and $\mathrm{HgS}(\mathrm{SCN})_{4}$ tetrahedra (Yan et al., 1999). Its three reported Lewis base (LB) [dimethyl sulfoxide (DMSO), glycol monomethyl ether (GME) and NMF (N methylformamide), respectively] adducts contain distorted $\mathrm{MnN}(\mathrm{SCN})_{4} \mathrm{O}(\mathrm{LB})_{2}$ octahedra and $\mathrm{HgS}(\mathrm{SCN})_{4}$ tetrahedra (Wang, Yu, Xu, Lu \& Yuan, 2000; Wang, Yu, Xu, Lu, Yuan, Liu \& Lu, 2000; Wang, Yu, Xu, Lu, Yuan \& Lu, 2000; Wang et al., 2002). The urea adduct possesses a slightly distorted octahedral $\mathrm{MnN}(\mathrm{SCN})_{3} \mathrm{O}(\text { urea })_{3}$ and tetrahedral $\mathrm{HgS}(\mathrm{SCN})_{4}$ (Wang et al., 2002). The thiourea (TU) adduct (Yu et al., 2001) consists of discrete $\left[\mathrm{Hg}(\mathrm{TU})_{4}\right]^{2+}$ and $\left[\mathrm{Mn}(\mathrm{SCN})_{4}\right]^{2-}$.

Figure 1
The molecular structure of (I), showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity. The dotted line indicates the intramolecular hydrogen bond. [Symmetry code: (A) $-x+2$, $-y,-z+1$.]

Received 18 July 2006
Accepted 11 August 2006

Deformed $\mathrm{MnN}(\mathrm{SCN})_{4} \mathrm{O}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ octahedra and $\mathrm{HgS}(\mathrm{SCN})_{4}$ tetrahedra are formed in the N, N-dimethylacetamide (DMA) adduct, $\left\{\left[\mathrm{MnHg}(\mathrm{SCN})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NO}\right\}_{n}$ (MMTWD; Wang et al., 2002), in which the DMA molecule is involved in hydrogen bonding with the coordinated water. In the present work, the coordination geometry of the title sulfolane adduct, (I) (MMTWS), is somewhat similar to that of MMTWD and obviously different from that of the other reported LB adducts.

(I)

According to the hard and soft acid and base (HSAB) concept (Pearson, 1963, 1966; Balarew \& Duhlew, 1984), the harder LB ligands (GME, DMSO, NMF and urea possessing a smaller size and higher electronegativity) are coordinated to the harder $\mathrm{Mn}^{\mathrm{II}}$ atom via their O atoms, while the softer LB ligand TU (lower electronegativity of the S atom) is coordinated to the softer $\mathrm{Hg}^{\text {II }}$ atom. Because DMA and sulfolane are both medium LB (larger size, higher electronegativity of the O atom), in both structures, the harder $\mathrm{H}_{2} \mathrm{O}$ is coordinated to the harder $\mathrm{Mn}^{\mathrm{II}}$, and DMA and sulfolane connect to $\mathrm{H}_{2} \mathrm{O}$ through hydrogen bonds. However, since sulfolane is larger in size than DMA, the orientation of the two water molecules are intramolecular in the structure of MMTWD, but intermolecular in that of MMTWS.

In MMTWS, each $\mathrm{Mn}^{\mathrm{II}}$ or $\mathrm{Hg}^{\text {II }}$ atom is in a distorted $\mathrm{N}(\mathrm{SCN})_{4} \mathrm{O}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ octahedral or $\mathrm{S}(\mathrm{SCN})_{4}$ tetrahedral geometry, respectively. The $\mathrm{Mn}-\mathrm{N}$ and $\mathrm{Mn}-\mathrm{O}$ bond lengths are somewhat longer and much longer, respectively, than the sum of the ionic radii (2.13 and $2.02 \AA$, respectively; Shannon, 1976). The bond angles for $\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O}^{\mathrm{i}}, \mathrm{N}-\mathrm{Mn}-\mathrm{N}, \mathrm{N}-$ $\mathrm{Mn}-\mathrm{O}$ and $\mathrm{N}-\mathrm{Mn}-\mathrm{O}^{\mathrm{i}}$ [symmetry code: (i) $-x+2,-y$, $-z+1$ (between adjacent atoms) are obviously different from 90°. The remaining three bond angles, N3-Mn1-N4, N2$\mathrm{Mn} 1-\mathrm{O} 1$ and $\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{O} 1^{\mathrm{i}}$, are much smaller than 180°. The $\mathrm{Mn}^{\mathrm{II}}$ and water O atoms, and their neighbouring $\mathrm{Mn}^{\mathrm{II}}$ and $\mathrm{O}\left(\mathrm{H}_{2} \mathrm{O}\right)$ atoms, join together to form a parallelogram. This is a particularly interesting feature among the reported MMTC LB adducts.

Figure 2
A packing diagram for (I), showing the three-dimensional network. The dashed lines indicate the hydrogen bonds.

The $\mathrm{Hg}-\mathrm{S}$ bonds of (I) are a little longer than the sum of the single-bond covalent radii ($2.52 \AA$; Pauling, 1960). The bond angles for $\mathrm{S}-\mathrm{Hg}-\mathrm{S}$ deviate from the typical tetrahedral angle.

Experimental

To a crystalline powder of MMTC (2.518 g) was added a mixed solvent of water (10 ml) and sulfolane (2 ml). This mixture was heated and stirred until the MMTC dissolved at about 333 K . The solution was allowed to stand at about 313 K . After several hours, the crystals used for structure analysis were obtained from this solution.

Crystal data

$\left[\mathrm{MnHg}(\mathrm{NCS})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~S}$
$M_{r}=626.03$
Monoclinic, $P 2_{1} / n$
$a=8.6605$ (9) \AA
$b=17.1620$ (18) A
$c=12.1745$ (13) \AA
$\beta=92.034(9)^{\circ}$
$V=1808.4(3) \AA^{3}$

Data collection

Bruker P4 diffractometer

ω scans

Absorption correction: ψ scan
(XSCANS; Siemens, 1996)
$T_{\text {min }}=0.315, T_{\text {max }}=0.376$
4825 measured reflections
3752 independent reflections

$$
Z=4
$$

$Z=4$
$D_{x}=2.299 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=9.77 \mathrm{~mm}^{-1}$
$T=296$ (2) K
Prism, colourless
$0.20 \times 0.10 \times 0.10 \mathrm{~mm}$

2500 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$
$\theta_{\text {max }}=26.5^{\circ}$
3 standard reflections every 97 reflections intensity decay: none

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.072$
$S=0.98$
3752 reflections
209 parameters
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0266 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$ 。
$\Delta \rho_{\text {max }}=1.11 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.94 \mathrm{e}^{-3}$
Extinction correction: SHELXTL (Bruker, 1997)
Extinction coefficient: 0.00342 (14)

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

$\mathrm{C} 1-\mathrm{N} 1$	1.142 (10)	N3-Mn1	2.189 (6)
C1-S1	1.661 (9)	N4-Mn1	2.190 (6)
$\mathrm{C} 2-\mathrm{N} 2{ }^{\text {i }}$	1.152 (9)	$\mathrm{O} 1-\mathrm{Mn} 1$	2.274 (6)
C2-S2	1.643 (8)	$\mathrm{O} 1-\mathrm{Mn} 1^{\text {iv }}$	2.384 (6)
$\mathrm{C} 3-\mathrm{N} 3^{\text {ii }}$	1.138 (9)	O2-S5	1.419 (7)
C3-S3	1.658 (7)	O3-S5	1.426 (6)
$\mathrm{C} 4-\mathrm{N} 4{ }^{\text {iii }}$	1.139 (9)	$\mathrm{S} 1-\mathrm{Hg} 1$	2.542 (2)
C4-S4	1.659 (8)	$\mathrm{S} 2-\mathrm{Hg} 1$	2.535 (2)
N1-Mn1	2.161 (7)	$\mathrm{S} 3-\mathrm{Hg} 1$	2.546 (2)
N2-Mn1	2.151 (7)	$\mathrm{S} 4-\mathrm{Hg} 1$	2.551 (2)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$	177.5 (8)	N1-Mn1-N4	92.0 (3)
$\mathrm{N} 2^{\mathrm{i}}-\mathrm{C} 2-\mathrm{S} 2$	179.4 (8)	N3-Mn1-N4	167.4 (3)
$\mathrm{N} 3{ }^{\text {iii }}-\mathrm{C} 3-\mathrm{S} 3$	174.7 (8)	$\mathrm{N} 2-\mathrm{Mn} 1-\mathrm{O} 1$	156.8 (2)
$\mathrm{N} 4{ }^{\text {iii }}-\mathrm{C} 4-\mathrm{S} 4$	177.3 (8)	$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{O} 1$	103.4 (3)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Mn} 1$	171.6 (7)	N3-Mn1-O1	84.1 (2)
$\mathrm{C} 2^{\mathrm{v}}$ - $\mathrm{N} 2-\mathrm{Mn} 1$	171.9 (6)	N4-Mn1-O1	84.2 (2)
$\mathrm{C} 3^{\text {vi }}-\mathrm{N} 3-\mathrm{Mn} 1$	158.9 (7)	$\mathrm{N} 2-\mathrm{Mn} 1-\mathrm{O} 1^{\text {iv }}$	84.7 (2)
$\mathrm{C} 4^{\text {vii }}-\mathrm{N} 4-\mathrm{Mn} 1$	162.8 (7)	$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{O} 1^{\text {iv }}$	167.9 (2)
$\mathrm{Mn} 1-\mathrm{O} 1-\mathrm{Mn} 1^{\text {iv }}$	106.6 (2)	$\mathrm{N} 3-\mathrm{Mn} 1-\mathrm{O} 1^{\text {iv }}$	81.9 (2)
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{Hg} 1$	95.0 (3)	$\mathrm{N} 4-\mathrm{Mn} 1-\mathrm{O} 1^{\text {iv }}$	99.2 (2)
$\mathrm{C} 2-\mathrm{S} 2-\mathrm{Hg} 1$	93.8 (3)	$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 1^{\text {iv }}$	73.4 (2)
$\mathrm{C} 3-\mathrm{S} 3-\mathrm{Hg} 1$	103.4 (3)	$\mathrm{S} 2-\mathrm{Hg} 1-\mathrm{S} 1$	112.17 (8)
$\mathrm{C} 4-\mathrm{S} 4-\mathrm{Hg} 1$	97.6 (3)	$\mathrm{S} 2-\mathrm{Hg} 1-\mathrm{S} 3$	106.30 (8)
N2-Mn1-N1	99.5 (3)	$\mathrm{S} 1-\mathrm{Hg} 1-\mathrm{S} 3$	110.86 (10)
$\mathrm{N} 2-\mathrm{Mn} 1-\mathrm{N} 3$	100.5 (3)	$\mathrm{S} 2-\mathrm{Hg} 1-\mathrm{S} 4$	110.82 (8)
$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{N} 3$	86.2 (2)	$\mathrm{S} 1-\mathrm{Hg} 1-\mathrm{S} 4$	105.65 (7)
$\mathrm{N} 2-\mathrm{Mn} 1-\mathrm{N} 4$	92.1 (2)	$\mathrm{S} 3-\mathrm{Hg} 1-\mathrm{S} 4$	111.12 (9)
$\mathrm{Mn} 1^{\text {iv }}-\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 1^{\text {iv }}$	0.0		

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1A $\cdots \mathrm{O}^{\text {viii }}$	$0.75(8)$	$2.01(8)$	$2.745(9)$	$168(9)$
O1-H1 $B \cdots \mathrm{O} 3$	$0.79(10)$	$1.88(10)$	$2.660(8)$	$166(9)$

Symmetry code: (viii) $-x+1,-y,-z+1$.

All H atoms of the sulfolane solvent were placed in geometrically calculated positions and refined using a riding model, with $\mathrm{C}-\mathrm{H}=$ $0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The two water H atoms were located in a difference map and refined independently with isotropic displacement parameters. The highest peak and depest hole are located 0.83 and $0.32 \AA$, respectively, from atom S3.

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: SHELXTL (Bruker, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: $S H E L X T L$; molecular graphics: $S H E L X T L$; software used to prepare material for publication: WinGX (Farrugia, 1999).

This work was supported by grant Nos. 60476020 and 50323006 of the National Natural Science Foundation of China.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Balarew, C. \& Duhlew, R. (1984). J. Solid State Chem. 55, 1-10.
Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca: Cornell University Press.
Pearson, R. G. (1963). J. Am. Chem. Soc. 85, 3533-3539.
Pearson, R. G. (1966). Science, 151, 172-177.
Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Siemens (1996). XSCANS. Version 2.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Wang, X.-Q., Yu, W. T., Xu, D., Lu, M. K. \& Yuan, D. R. (2000). Acta Cryst. C56, 418-420.
Wang, X. Q., Yu, W. T., Xu, D., Lu, M. K. \& Yuan, D. R. (2002). Acta Cryst. C58, m36-m38.
Wang, X.-Q., Yu, W.-T., Xu, D., Lu, M.-K., Yuan, D.-R., Liu, J.-R. \& Lu, G.-T. (2000). Acta Cryst. C56, 1305-1307.

Wang, X.-Q., Yu, W. T., Xu, D., Lu, M. K., Yuan, D. R. \& Lu, G. T. (2000). Acta Cryst. C56, 647-648.
Yan, Y. X., Fang, Q., Yuan, D. R., Tian, Y. P., Liu, Z., Wang, X. M., Jiang, M. H., Williams, D., Siu, A. \& Cai, Z. K. (1999). Chin. Chem. Lett. 10, 257-260.
Yu, W.-T., Wang, X.-Q., Xu, D., Lu, M.-K. \& Yuan, D.-R. (2001). Acta Cryst. C57, 145-146.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

